因此,在合理選擇太陽能光伏支架管坯加熱速度時應考慮下列因素:
1、鋼的化學成分及其熱傳導性。導熱系數低的鋼,加熱速度要慢。隨鋼中含碳量和合金元素含量的增加,鋼的導熱性下降。高合金鋼和某些合金鋼在低溫時導熱性很差,而在高溫時反而有所升高,故它們應采用低溫慢速、高溫快速的加熱工藝。
2、鋼的塑性。絕大多數的鋼種在600℃以下時其塑性較差,因此在低溫預熱段應采用慢速加熱。含碳較高的鋼和高合金鋼一般塑性較差,應采用低溫慢速加熱。
3、太陽能光伏支架坯的斷面尺寸。管坯直徑較大時,加熱速度應緩慢一些。
4、鋼的組織狀態。鑄造組織比變形組織的塑性差。鑄造組織在晶界上有大塊雜質集聚,其導熱性低。軋后管坯比連鑄管坯的塑性好、導熱性強。因此連鑄坯要比軋坯的加熱速度低。







光伏支撐基礎不均勻凍膨脹的關鍵是凍土地區光伏項目開發建設的和問題。本文結合東北地區某光伏項目在凍土地質條件下的太陽能電池板支撐基本設計方案,從基本類型選擇,解決了支撐基本因凍脹不均而損壞光伏組件的問題,提出了一套基本可行的設計方案,避免凍土地區光伏支撐基本不均勻凍脹。凍土地區一般具有以下氣候和地質特征:
1)冬季氣溫較低,一般溫度為-20℃以下;
2)土質為強凍脹土或特強凍脹土,如粘土、質地粘土等;
3)地表水豐富,水位高。在地表水豐富、水位高的環境中,混凝土獨立基礎、混凝土樁基礎和需要現澆混凝土的微孔灌注樁基礎的施工難度較大,凍土地區冬季氣溫極低,混凝土澆筑和養護質量難以保證。混凝土條狀基礎更適用于場地平整、地下水較低的地區(如沙漠)。在凍土地區,這種情況基本上容易出現不均勻上升和傾斜。螺旋鋼管樁基成本高,不適用于強腐蝕環境和循環污泥土。

在光伏電站并網測試中,由于測試裝置容量所限,并非對電站整體進行低電壓穿越性能測試,而是按逆變器型號的不同將整個光伏電站劃為多個分區,每個分區隨機抽選一個1MW發電單元進行檢測。
測試接線時應先停止被測并網單元逆變器的輸出,將測試電纜接在被測并網單元的并網斷路器兩側,從而將移動檢測平臺串接向生電站網絡主回路中。接線工作完成后合上被測單元并網斷路器,恢復所有電源,使電站正常運行。
